
-f" 76 INSTRUCTIONL SUPPORT SOFTHARE(U)
CDONNELL DOUGLS Sin

ASTRONAUTICS CO-ST LOUIS NO Nil 96 AFHRL-TR-95-53
UNCLSSIIED F33615-81-C-9921 FG92 N

1 16

4A

MIS

1 .2 5. 1 . M

MICInMIPCHAR

46i__ _ %_AV

%: ,%-.%l A

AFHRL-TR -85-53

A IR FO R C E INSTRUCTIONAL SUPPORT SOFTWARE SYSTEM

'1 H
NU McDonnell Douglas Astronautics Companyan P. 0. Box 516

MV St. Louis, Missouri 63166

(0A TRAINING SYSTEMS DIVISION

* .IN Lowry Air Force Base, Colorado 80230-5000 '

R March 1986

E Final Report for Period July 1981 -September 1985

S
0

U Approved for public release; distribution unlimited.

J
R

% E
_tj S --LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Governuent-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or
in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation;, or as conveying
any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to
the National Technical Information Service, where it will be available to
the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

- ALAN MARSHALL
Contract Monitor

-' JOSEPH Y. YASUTAKE, Technical Advisor
Training Systems Division

DENNIS W. JARVI, Colonel, USAF
Commnander

rz'n

Uncl assi fied))
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMIER(S)
AFNRL-TR-85-53

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

McDonnell Douglas (If applicable) Training Systems Division
Astronautics Company Air Force Human Resources Laboratory

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, end ZIP Code)

P.O. Box 516
St. Louis, Missouri 63166 Lowry Air Force Base, Colorado 80230-5000

Ba. NAME OF FUNDING ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if ap~plicable) ,-

Air Force Human Resources Laboratory HQ AFHRL F3365-81-C-0021

8C. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Brooks Air Force Base, Texas 78235-5601 ELEMENT NO. NO. NO. ACCESSION NO.
62205F 1121 09 07

11 TITLE (include Security Clsi:fication)

Instructional Support Software System

12 PERSONAL AUTHOR(S)

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year,Month, Day) 15. PAGE COUNT
Final FROM juLM TO S o March 1986 26

16 SUPPLEMENTARY NOTATION

17 COSAT! CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Ada computer-managed instruction

05 09 advanced instructional system instructional support software
computer-assisted instruction transportable instruction system

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This report describes the development of the Instructional Support System (ISS), a large-scale,
computer-based training system that supports both computer-assisted instruction (CAI)'ar d computer-managed
instruction (CMI)U The ISS is a software package that is written In Ada, designed to be machine independent,
and grouped into functional modules so that each module can be executed individually or can be combined as

needed to support operational requirements. The ISS is not designed for any particular machine or operating
system and, hence, can run on computer systems ranging from small microcomputers on up. The ISS is a
Government product available on a no-cost basis to authorized agencies or organizations.

I -* 1 r , , ., . ..

* (I, ' .-

20. DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[M UNCLASSIFIED/UNLMITED l SAME AS RPT QOTIC USERS

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Nancy A. Perrigo, Chief, STINFO Office (512) 536-3877 AFHRL/TSR

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF 7HfS PAGE
All other edition% are obsolete. Uncl assi fled

j,

S°..'

. . * . --

L '2 '2 2 L2-,':'2:2".'.:2.,.'.'.' ,
".

€ , .r" " .- "." -""" -'.- " ,' -" '- -' ." '" - :.-' -".. "..-..--.. '-.-...,-'.-.,.-.. ... ". .
• llllll.. - * ' .. :

A team comprised of personnel from AFHRL, McDonnell Douglas Astronautics Company, Denver ,

Research Institute, and Softech determined requirements for and developed the Instructional

Support System (ISS). The basis for this development was the Advanced Instructional System V,

(AIS), a computer-based instructional system developed jointly by AFHRL and McDonnell Douglas ,

Astronautics Company.

Early in the project, McDonnell Douglas teamed with Denver Research Institute to determine
the functional requirements of the ISS. An examination of key DOD training systems occurred to
determine the feasibility of adding certain key features to the ISS at reasonable cost. Also,
several key DOD training environments were examined to determine training requirements the ISS

would need to address. Existing AIS capabilities as well as inputs from these DOD analyses were
used to create a Functional Description of the ISS. Existing AIS software which best satisfied
the Functional Description were then converted.

Nine basic applications software modules, comprising approximately 300,000 lines of source
code, exist as a result of the conversion. They are CAI Authoring, CAl Presentation, Graphics,
Simulation Authoring, Simulation Presentation, CMI Development, CMI Operation, Data Analysis, and
Access/Security.

A translator was developed by McDonnell Douglas and Softech to assist in the conversion from
CAMIL (Computer-Assisted/Managed Instructional Language), the primary language of implementation
for the AIS, to Ada, the primary language of implementation for the ISS. The translator was
capable of translating approximately 80% of a CAMIL program to correct Ada. Approximately 20% of
a CAMIL program was either partially translated or untranslated. These areas were clearly marked

with manual translation hints in the resultant Ada. i--

The ISS Application Support Environment (ASE) was developed concurrently with conversion of
the applications software. The purpose of the ASE is twofold: First, it provides portability to

the ISS, given that machine and operating system dependencies are implemented at the lowest level
of the support environment; second, it provides a variety of basic runtime support services to
ISS applications software to assist in the areas of user interaction, data processing, and

storage and retrieval of data.

, Finally, an important aspect in the success of the Standardized Software project was a
microcomputer analysis, conducted to analyze and recommend small machines capable of executing
ISS software modules. An tC68000 basic Pacific Microcomputer P4200 was procured by the Air Force
as a result of the study. Key software modules were successfully compiled and executed on the

' system, demonstrating the concept of ISS transportability and feasibility of running the ISS on a
microcomputer. --- ------

4 P7,nln"o

, F]

By QUALITY r

_D A t v1 INSPECTEaD

P.': . o°•

Dist I
' ['

,... :a

PREFACE Y

A number of individuals have contributed significantly in the successful design and
imlementation of the ISS. Alphabetically, these individuals are: Dick Bolz
(AFHRL/ID). Dave Grossart (MDAC). Alan Hallauer (NDAC). Alan Marshall (AFHRL/ID). Glenn
McBride (NOAC), Anne Montgomry (MOAC) * Dave Pfl asterer (F'UAC), Steve Schaefer (M4DAC),
Rick Sheigron (NDAC), Hark Weinberg (It)AC), and Dana Wunderlich (MDAC). . ~

TABLE OF CONTENTS

Peg.

1.0 INTRODUCTION... 1..

2.0 PROJECT DESCRIPTION

3.0 1MAJOR ACCOMPLISHMENTS. 2

3.1 Converted Applications Software. 2
3.2 CAIL-to-Ada Translator 4

3.2.1 Translator Action Routines 5
3.2.2 Translation Routines. 6

3.3 The Application Support Environment 7

3.3.1 TerminalCommunication. 7
3.3.2 Data Management. 9
3.3.3 Inter-Process Communication. 9
3.3.4 Text Handling 9
3.3.5 Program Control 10
3.3.6 Mathematical Services. 11

3.4 Software Portability. 11

3.4.1 Ada Programing Language Requirements 11
3.4.2 Host Operating System Requirements. 12
3.4.3 Hardware Requirements. 12

3.4.3.1 Process/Peripheral Requirements 14

3.4.3.2 Display Station Requirements 14

3.4.4 VAX-11/780 And PI'200 Implementations. 15

4.0 ISS POTENTIAL. 15

4.1 Current Implementations. 16
4.2 Future Implementations 16
4.3 The Configurable ISS 16

*4.4 ISS Tailoring. 16
4.5 The ISS Micro As A Central Processor. 17

5.0 CONCLUSIONS AND RECOMMENDATIONS 18

REFERENCES. 18

~wJ:~~rz~~. . ~azz~L~r~-i ~wim.a -~ - ~.j~*, *..V14 Mt. Ply -,9 y 1'7 W Y 7 7...~' ~

P..

LIST OF FIGURES

Figre Pagp
1 ISS Software Structure...*. * 3

2 Automatic Translation from CAI4IL to Ada. 5

3 Translator Functional Decomposition 6

4 ISS Software Structure Illustrating the Divided Application Support Environment. ... 7

5 Inter-Process Conmmunication.***** 10 -

6 Example of Cost/Performance Alternatives . 17

LIST OF TABLES

Table Page
1 VML Procedures Utilizing Most Operating System Software 13

2 YF4. Procedures Fulfilling Performance Requirements. 14

iv

A:- w

-~~~~~~! - .- - .M7. -7

INSTRUCTIONAL. SUPPORT SOFTWARE SYSTEM

1.0 INTRODUCTION

The prototype Advanced Instructional System (AIS) was designed as a research and development

test bed for technical training. As such, It demonstrated that individualized computer-assisted
Instruction (CAI) and computer-managed instruction (CMI) are directly applicable to an
operational Air Force training environment.

Although demonstrated as feasible, the original system was not transportable; therefore,
*exploitation of the training technology was limited. In order to correct this problem, the

Technical Training Division of the Air Force Human Resources Laboratory (AFHRL) awarded a
contract to the McDonnell Douglas Astronautics Company to create a transportable system. This
Standardized Software project had as the major goal to create a transportable instructionalI system that is implementable on low-cost minicomputers and microcomputers in order to expand into
the appropriate DOD training environments. The transportable system, called the Instructional
Support Software (ISS) system, has been developed and alpha tested. An operational test of the
system is projected to begin during the third quarter of 1985.

The Air Force set forth several key requirements to accomplish its major goal. It was
decided that Ada, the newly standardized DOD language, would be used to enhance system
portability. Ada is the ideal language in which to implement transportable software, given its
mission as a standard high-order language that will become available on many machines.

Another requirement was to develop a set of generalized interfaces to enhance portabiI Ity.
By embedding machine dependencies low into the ISS support software, the necessary interface to

P the host operating system could be accomplished in a portable way.

The final key requirement was to create application software made up of modular components to

support the execution of individual portions of the 155. Components such as Authoring, Graphics,
and CAI Presentation were to be created for execution on an individual basis. By allowing
potential DOD customers the capability to choose only a subset of the entire 155, particular

needs can be met at lower cost.

In order to report the significance and results of the Standardized Software project, the
following sections of this report will provide a project description, a statement of the major
accomplishments of the project, information on ISS potential, and conclusions and recommnendations.

2.0 PROJECT DESCRIPTION

Early in the project, McDonnell Douglas teamed with the Denver Research Institute to
*determine the functional requirements of the ISS. Key DOD training systems were examined to

determine the feasibility of adding certain key features to the ISS at reasonable cost. Also,
several key DOD training environments were examined to determine what training requirements the
ISS would need to address. Existing AIS capabilities, as well as inputs from these DOD analyses,

*were used to create a functional description of the ISS. Existing AIS software which best
satisfied the functional description was then converted.

Nine basic application software modules, comprising approximately 300,000 lines of source
code, exist as a result of the conversion. They are CAI Authoring, CAI Presentation, Graphics,
Simulation Authoring, Simulation Presentation, CMI Development, CMI Operation. Data Analysis, and
Access/Security.

d7

-7, W_ I .-W. V

-P

A translator was developed to assist in the conversion from CAMIL (Computer-Assisted/Managed
Instructional Language), the primary language of implementation for the AIS, to Ada, the primary
language of implementation for the ISS. The translator was capable of translating approximately
80% of a CAMIL program to correct Ada. Approximately 20% of a CAMIL program was either partially

translated or untranslated. These areas were clearly marked with manual translation hints in the
resultant Ada.

The ISS Application Support Environment (ASE) was developed concurrently with conversion of
the application software. The purpose of the ASE is twofold. First, it provides portability to
the ISS, given that machine and operating system dependencies are implemented at the lowest level .
of the support environment. Second, it provides a variety of basic runtime support services to
ISS application software to assist in the areas of user interaction, data processing, and storage
and retrieval of data.

Finally, an important aspect in the success of the Standardized Software project was a
microcomputer analysis, conducted to analyze and recoamend small machines capable of executing

ISS software modules. An MC68000-based Pacific Microcomputer PM200 was procured by the Air Force
as a result of the study. Key software modules were successfully compiled and executed on the
system, demonstrating the concept of ISS transportability and the feasibility of running the ISS

on a microcomputer.

3.0 MAJOR ACCONPLISH14ENTS

The goals set forth at the beginning of the Standardized Software project have been

accomplished. Applications software which best satisfies the functional description has been
converted or developed. The developed system is portable. After the software had first been
produced on the development machine (VAX-11/780) and then transported to the PM200 microcomputer,
the concept of portability had been demonstrated. And finally, the system has been implemented
on a low-cost minicomputer and microcomputer.

The ISS is organized using a layered shell approach to allow for maximum ease of maintenance
and transportability. The design philosophy of the software is depicted in Figure 1. ISS users

interface with a set of programs called the Applications Software (described in Section 3.1).
The next layer of software, called the Application Support Environment, performs the interfacing
tasks necessary to support the Applications Software. The innermost layer is the Operating
System Software. This software provides interface to the computer hardware. The advantage of

this layered approach is that changes in basic hardware configuration or operating system
software are unlikely to adversely affect the ISS Applications Software. The Applications
Software is buffered by a layer of support environment software that performs the interfacing

between Applications Software and the operating system and hardware.

The following sections discuss in more detail the major accomplishments during the project.

3.1 Converted Applications Software

With the ISS software modules, a user is able to develop, implement, and evaluate training.
Table-driven database programs, called editors, are dominant in the system, thereby allowing a
user to easily insert, display, and/or change information in the database. The most important
characteristic of the editors is that they allow quick access to the database via menus and
prompts. No computer programming skills are necessary for ISS system users.

2

., - .-. o.

:!..-. ,.-...-,....-......,...-....... ,,................ .,......,.--.-.. . .

RIC

AUT0404ING

CAI
CR EDPIITO

ADAPTIE PRESNTATIO

= POGt M OE PROGRAM

:':" C A

1 igre1 ISotwreSrutue

-"ClOUIRSE*O SIMULA TION

sytm h omrprvdstedvlpmn n eieyc pablt Oon-lin CA, hie•h

"~~POT APP:CATON O*""

P .UMOST MAHNIO
°

,.-RGSTATO APRIANT IFTAR

,p_._, APPPLICTTONN

APLCTO SOFTWAREACI

INTERIFACE-:.-

• " Figure 1. ISS Software Structure.

.i :-._The applications software is divided into two major functi ons: the CAI system and the CM]NI:,

... system. The former provides the development and delivery capability for on-line CAI, while the

CMI system controls the administrative and management functions for a given installation. Both
systems are integrated into the ISS package and share a common base of data and utility programs.

The CAI system allows nonprogrammers to develop and evaluate individualized, interactive CAI
. modules containing a variety of text and graphics. Using the CA! editors, development of

courseware takes the form of an ongoing dialog between the author and the system. There are
three major authoring programs in the CAI software: CASS, SID, and GraphEdit. CASS Is the
screen-frame-oriented, courseware-authoring editor that guides the author via the use of menus.
SID is an action-to-screen-oriented simulation courseware authoring editor that also guides the
author via menus. GraphEdit is a graphics creation editor for CASS and SID that guides the
graphics artist through input from many possible sources such as the keyboard, a digitizer
tablet, a touch panel, a joy-disk, or a light pen. Like the other editors, GraphEdit is
menu-driven.

CA! lessons are delivered to students through CAI software modules: CA! Presentation
(CAIPres) and Simulation Presentation (SlDPres). These modules provide the student with all CAI
and simulation lessons and allow for interaction, screen dynamics, branching, remediation,
feedback, and prompts. Like the authoring modules, CAIPres and SlOPres are menu-driven and
user-friendly.

The CMI system provides comprehensive management information and administration
implementation. It controls the scheduling of assignments, testing, remediation, and enrichment
activities for each student.

3

....... -...-,.-........-.....-..-.....-..,...,.-.......... ,..,,...,..................,...,......-.... -.. :....., .:.
. ,. , . ,

Four major editors assist the curriculum developer in describing the curriculum. By using
these four editors, the Curriculum Definition Editor (CDE), the Course Structure Editor (CSE),the Lesson Definition Editor (LDE), and the Test Editor (TESTED), curriculum developers and
managers can define increasingly detailed characteristics of a curriculum. After the development
task is complete, the CMI operation programs administer the curriculum.

self-pacing are maintained by three CMI programs comprising the CMI operations module. The

programs are Student Logon, Student Registration, and the Adaptive Model.

Evaluation of individual student and overall course progress is monitored and recorded by
three CMI evaluation programs comprising the Data Analysis module. The programs are CourseEvaluation Summary (CES), Test Item Evaluation (TIE), and the Data Extraction Program (DEP).These programs report data such as the standard deviation/mean times and test scores for a
lesson, course, or entire curriculum (CES), determine standard deviation/mean time and scores forspecific tests and test items (TIE), and select any available data, ad hoc, to run analysis forcurriculum evaluation and student/group performance (DEP).

The Access/Security module is used to define the access a user will have to the ISS. The
Access/Security software is necessary to allow operation of all of the other ISS software. Thesoftware contains two programs: USRED and LOGON.

Users of a computer-based training system are typically concerned with the security measuresthat control access to the system. USRED allows system managers to control access to all ISS
components and software. It identifies users, database programs, and courses to the ISS system,
and authorizes and/or restricts the access of individual users to ISS editors, database programs,
and courses. USRED can also regulate a user's level of access within a specific editor, databaseprogram, or course. One may, for example, give a user permission to add and/or change
information in a specific course, but not to delete information. One may give another user
permission to display information but not to manipulate it in any way.

The LOGON program provides all users with access to the ISS. It also functions as a security
checkpoint by requiring the user to enter a specific ID followed by a specific password. LOGONcompares the information entered by the user with information that has been stored by USRED in
the user record. If no match is found, LOGON instructs the user to reenter the data.

Students entering LOGON are automatically transferred to the Student Logon program. Once in
Student Logon, a student user can interact with the ISS for training activities.

Non-student users are admitted to the system via LOGON. Here, the user is presented with a
list of editors and database programs that have been authorized the user via USRED.

3.2 CAMIL-to-Ada Translator

A translator has been developed to assist in the conversion from CAMIL (AIS-3.8-1674, 1979)
to Ada. The translator is capable of translating approximately 80% of a CAMIL program to correctAda (ANSI/MIL-STD-l815A, 1983). Approximately 20% of a CAMIL program is either partially
translated or untranslated. These partially or untranslated areas are clearly marked with manualtranslation hints in the resultant Ada. Figure 2 illustrates the mechanism used to translate a
CAMIL program to Ada and to compile and link that Ada program into executable form.

4

VAXl

ADA COMPILATION

CAAMIL

C~EYADSAT@ ASDA -OPLeTN

Figure 2. Automatic Translation from CANJL to Ada.

The functional units that comprise the translator are generally the same as those that
comprise the CA14IL compiler. The major differences in the translator functional units are as
follows: (See Figure 3 and DDl017FOJ9, 1974.)

1. Modification of production action routines.

2. Replacement of code generation routines with Ada source generation routines.

3. Additions to data structures for symbol and type table entries.

Other minor differences exist. For example, the translator version of the lexical analyzer
and parser saves information about comments appearing in the source so that they may be preserved
in the Ada translation. Figure 3 illustrates the combined top-level functional decomposition of
the CAZ4IL compiler and the translator. Note that the portion labeled Code Generator is part of
the CA-IL compiler and is replaced by the Translation Routines and Ada Source Generator in the
translator. All the other top-level functional units are shared by both the compiler and the

S-translator (with the differences already mentioned). Sections 3.2.1 and 3.2.2 contain a general

* description of how a translation is accomnplished.

3.2.1 Translator Action Routines

% Each time the translator's parser recognizes a particular construct or portion of a construct
(called production) in the CAIL language, it invokes an associated action routine. These action
routines are responsible for checking semantic restrictions and building data structures (called
semantic frames) to represent the construct recognized. Syntax checking is done by the parser.

The semantic frames generated by action routines are placed on a stack which is pushed and

popped by the parser as constructs are recognized. In this way, an action routine for a

Atnie

I rotins ae reponibl fo chekin seantc retritios ad buldig dta trucure (clle

T: semantic frames to represent.the.o.st.u.t.re.ogniz.......................te paser

\ 'A

a.L §3IICAL 92YANTI LAT,. CS OJ

% ,.% -

S. *g,-;.

~...>.

Figlure 3. Translator Functional Decomposition. ,..'_

low-level production (for example, one that processes an operator expression) can pass

information about that production to another action routine associated with a higher level _;'..
production (for example, an assignment statement production in which the operator expression r.V.
forms the right-hand side). ;, ;;"

The action routines representing the declaration productions (e.g., variable declarations) .'
build symbol and type table entries using information that has been saved In semantic frames by ..
action routines.

Similar'y, action routines Invoked for statement level productions (e.g., assignment) call
translation routines to generate code passing them information saved in semntic frames (e.g., "
variable and expression frames) built by lower frames (on the parser stack), which represent the....
parts of the right-hand side of the semantic production. The action routine usually generates a
ncw semantic frame that is input to higher level productions; however, some action routines :
generate a symbol or type table entry and/or call a translation routine to generate Ada source ,...
code.

3.2.2 Translatton Routines

The translation routines are organized in a manner that roughly parallels the productions. i ':

These routines are intially invoked by statement level action routines and internally invoke
each other to complete translation of a statement. The transition routines call the routines in

* the Ada source generator that actually generate the source string. The translation routines
operate by "walking" through the semantic tree and calling Pda source generation routines.

."

• o ~ ~ ~ ~ ~ . -i ... °.. ++oq . * °

W-1 W W AL1 mrlLN7 I T% 2W1r m- rl'd ~

3.3 The Application Support Environment

The purpose of the Application Support Environment is twofold. First, it provides
portability to the ISS, given that machine and operating system dependencies are implemented at
the lowest level of the support environment. (See Section 3.4.) Second, it provides a variety
of basic runtime support services to ISS applications software to assist in the areas of user
interaction, data processing, and storage and retrieval of data.

The Application Support Environment is divided into two layers: the Application Support Layer
(ASL) and the Virtual Machine Layer (VML). Figure 4 illustrates the division of the Application
Support Environment in order to support the applications software and to Interface to the host
operating system. This section of the report describes the support services provided 4by the ASL
to the applications software. The VNL is discussed in Section 3.4. The ASL provides software In

-. the areas of terminal communications, data management, inter-process comunication, text
handling, program control, and mathematical services.

CAIt

.1°

AUTHORINGS

&CMI EDIOR CA

ADAPTIVE PRSNTTO *

ApliCation SpotEvrn ET R3.. TrinlCeinia ion'

U.ITO

iPRqOGA "OsT ED ITOR

- OPERATING
€111 SY TE AI " '

PRGA NUAL lACHNI PRORA

VlIRTUAL
-" IWE MACHINE ..

APPLICATION 11OFTWARK INTEFAC

% ~APPLICATION e*d
~~IuPPORT i

INT~RlFACE

Figure 4. ISS Software Structure Illustrating the Divided .,
-" Appli cation Support SEyvirnment.

[:" 3.3.1 Terminal Comunication ::

I "The Terminal Communication component provides the functional interface between the ISS %:
ll applications software and the terminal devices used to communicate with applications software
IIusers. Terminal devices can be easily added since individual terminal characteristics are stored
lip t~n data tables. All that is necessary for the ISS to support a new terminal type is to enter the --'

. data describing the new terminal into the terminal definition table. The full set of combined

7
• %'%

X-V ~ ~ .4- - -X- iriIXi-%t". -. ".ljr%.---.-WIjppAMpv -p:4- . -

text/graphics display characteristics and capabilities provided by the Terminal Communication
component are as follows:

1. Characters per line range from 60 to 128.

2. Lines per screen range from 24 to 64.

3. Lines are numbered from 1 to L with line 1 at the top of the screen and line L at the
bottom of the screen.

4. Columns are numbered from 1 to C with column I at the leftmost character cell position
and column C at the rightmost position.

5. Random cursor positioning is possible to any character position within the character

matrix defining the screen.

6. Random cursor positioning to any dot position within the dot matrix is possible.

7. Double height and width characters, as well as normal height and width characters, are
displayable.

8. Lines of dots from the current dot position to a different dot position are displayable.

9. Either a complete or partial circle of dots with a given radius is displayable, starting
at the current cursor position.

10. Text and graphics are displayable in eight different colors.

11. It is possible to select whether background or foreground elements can blink.

The terminal keyboard is the means by which users of an application program input data to
that program. Keypresses are interpreted by the Terminal Communication component and acted upon
where appropriate. Provisions are made for four distinct types of keys. These keys, as well as
the set of keyboard characteristics and capabilities, are as follows:

1. Textual Data Keys - This set of keys represents the printable character symbols as
defined in the ASCII character set.

2. Function Keys - This set of keys has special meaning to the Terminal Communication
component. Entry of an enabled function key triggers a preemptive transfer of control from the
current point of execution within an application program to a handler area previously declared
within the program.

3. Action Keys - This set of keys has special meaning to the Terminal Communication
component. Entry of an action key causes the Terminal Communication component to act on the data
being assembled by a keyboard read operation (e.g., deletion of a character by pressing the
delete key).

4. Terminal Control Keys - This set of keys has special meaning to the Terminal
Communication component. Each terminal control key represents a special terminal control \
function which can be performed by pressing that key. The terminal control functions generally
affect the current display screen attributes (e.g., color and blink).

8

3.3.2 Data Management

The Data M4anagement component consists of the ISS database and the necessary operations
required by the applications software for accessing and maintaining the database. The database
is the data storage system for all of the data objects used by the ISS applications software. It

*supports Indexed Sequential, Direct Access, and Sequential files. The names of the files are
stored in a directory within the database along with sufficient additional information necessary
to access the file. A file cannot span disks but is otherwise not limited in size. The
characteristics of the different file types are as follows:

1. Indexed Sequential (ISAM) Files - An ISAI'4 file is capable of containing zero or more
records, each of which may contain a variable amount of data. For each ISA4 file in the data
base, a Nkey" is defined which designates that a specific portion of each record be used to
define a sequential ordering of the records contained in that file. Each record is at least long
enough to contain the entire key. An index sufficient to map key values to record locations, in
order to support random record accessing, is maintained for each ISA4 file. An ISA4 key can be a
maximum of 127 bytes.

2. Direct Access (DA) Files - A DA file is capable of containing zero or more records, each U

of which may contain a variable amount of data. Each record within a DA file is associated with 0'
a relative record number which defines the sequential ordering of the records contained in that
file. An index sufficient to map relative record numbers to record locations, in order to
support random record accessing, is maintained for each Direct Access file. The maximum relative
record number in use for each file is maintained in order to facilitate the allocation of unused
relative record numbers to new records entered into that file.

3. Sequential Files - A sequential file is capable of containing zero or more records, each
of which contains a variable amount of data. The records within a sequential file have a
sequential ordering based on the order that the records were written into the file.

3.3.3 Inter-Process Communication

The Inter-Process Comunication component provides a set of functional capabilities to
applications software to enable concurrently active ISS processes to conmmunicate among
themselves. Figure 5 depicts that conmunication. The process is the logical unit of activity
within the ISS execution environment and the primary entity relating to Inter-Process
Comunication. It is an active computing environment that can support the sequential execution
of one or more programs. Each active ISS user is associated with a dedicated process andIB
interacts with ISS application programs that execute within this dedicated process. The
operating system used by ISS systems and applications software supports the execution of multiple
concurrent processes; therefore, multiple, concurrent 155 users are supported.

Each active 155 process is associated with a system-wide 155 Process Index Number which
uniquely identifies that process within the system. The Process Index Number is kept across the
execution of multiple ISS application programs. At the completion of an ISS process, the Process
Index Number is deallocated, allowing other processes to reuse the number.

JI 3.3.4 Text Handling

The Text Handling component provides a set of functional capabilities to ISS applications
software to manipulate text for display, comparison, assignment, examination, and conversion
to/from non-textual data types. Two data types comprise textual data in the ISS: String and

9

%4
.?4S

'AO COPY

se

DACKGROUND USER

usE to PROCEi POCESS

PR O C ESSI~l

USER USER I
PmOCESS PROCESS

..

Figure 5. Inter-Process Comunication.

Character. String and Character data contain one or more characters of ASCII encoded data
representing displayable characters or control characters. String data may also contain generic
codes that specify functions to be accomplished by the Terminal Communication component.

A string has an actual length and a maximum length associated with it. A variable string has
a termination character to indicate the actual length, with the maximum length indicated at the

E time of declaration. For the string declaration

S : STRING (1..5);

the maximum length is 5. By initializing "S" with the assign string procedure

ASST(S, "ABC");

- the actual length is set at 3. "S" would appear as "ABCtc" in computer memory, where tc is the
termination character. If the actual length of a variable string is equal to the maximum length,
then no termination character is stored in the string. The actual length is determined to be the
maximum length when the appropriate string-handling procedures detect no termination character.

3.3.5 Program Control

The Program Control component provides services to assist in the control of the execution
flow of ISS programs. The design of existing software for the ISS assumes some additional
execution control flow capabilities beyond those available in the ISS implementation language,Ada. The services provided by Program Control are as follows:

10 ~ 4

%

1. Program Transfer - An ISS program is able to designate which program should execute
within the current process after the current program terminates its execution.

2. Inter-Program Data Passage - An ISS program is capable of passing data for retrieval by

the next program specified for execution.

3. Timed Walt - The capability exists for a program to suspend its execution for a
designated time interval; the granularity of time is .01 second.

4. Obtaining Date and Time of Day Information - The capability exists for obtaining the
current date (year, month, day, and Jullan date) and current time (hour, minute, and second).

5. Obtaining elapsed and central processing unit (CPU) Time - The capability exists for

obtaining the elapsed and CPU time for a session. The variables returned are in 10-millisecond
units.

.. "*

3.3.6 Mathematical Services

The Mathematical Services component provides a set of capabilites to ISS applications
software to perform trigonometric, boolean, exponentiation, logarithmic, and other miscellaneous
mathematical functions.

Three types comprise the data that can be manipulated by the mathematical functions:
INTEGER, FLOAT, and BOOLEAN. The INTEGER and FLOAT data types are implementation defined with
respect to magnitude. If a particular host supports 32-bit integers, for example, an ISS INTEGER
will be 32 bits. If a host supports 16-bit integers, an ISS INTEGER will be 16 bits. The
BOOLEAN data type is represented as an enumeration type in the following way:

type boolean is (false, true); e:

3.4 Software Portability

In completing the design and Implementation of a transportable system, .. has been determined
what capabilities are necessary in candidate systems in order to port the ISS to those systems
(Marshall, 1983). Requirements of a candidate system can be divided into (a) Ada programing
language requirements, (b) host operating system requirements, and (c) hardware requirements
(processor/peripherals and terminal). A discussion of those requirements follows in the next
three sections of this report, followed by a section describing experience transporting the ISS
from the development machine (VAX-11/780) to the PM200 microcomputer.

3.4.1 Ada Programing Language Requirements

Since the ISS is implemented in the Ada language, it will be necessary for any candidate
system to provide an Ada compiler. Using such a system does not guarantee successful
implementation of the ISS, however. For example, some existing validated compilers impose

limitations with respect to code/data sizes and pragma implementation (a pragma conveys ,#"-

information to the compiler but does not affect the correctness of a program). Also, some
existing compilers are incomplete implementations and do not provide features needed by the ISS.

,,

If code and/or data are limited to 32k or 64k in a particular implementation of Ada, some ISS
programs will not execute without modification on that system.

I% %

w . .. " . . . , - . * . * * . o - . w , . . . *'. ', '11

: :." .,." . - . .;. ..- - . ., ".; : .;..'..'.. '..'..'..';...;..'.< ".......-; -............... :

Certain pragmas are necessary for a production implementation of the ISS (or a means must be
devised to equivalently implement the effect of missing pragmas). If the pragma PACK does not

sufficiently pack data, data management performance will degrade because records will be much
larger than if packing were available. If the pragma INTERFACE is not provided by an Ada
compiler, it is awkward to interface to the ISS VML procedures (Figure 4) that are necessary to
implement the ISS. If the pragma SUPPRESS Is not available, costly execution time checks on
subranged integer assignments and array bounds will constantly occur, causing a degradation In
performance due to high CPU utilization. Also, while the pragma INLINE is not required, its

presence is beneficial since sound design principles can then be used. By appropriately using
procedures and functions and declaring them to be compiled inline, performance is not degraded
due to costly procedure call and function call linkage.

Note that in certain cases it may be possible to implement a system without the pragma PACK,
pragma INTERFACE, and pragma SUPPRESS. Alternate methods causing the same effect should always
be considered.

3.4.2 Host Operating System Requirements ,- .

In order to fulfill ISS functionality and performance needs, ASL software must utilize VML ,

machine-dependent procedures (Figure 4). These VML procedures, written in a non-Ada language
provided by the host system, must be reimplemented on a system to rehost the ISS to that system.
The VML procedures are of two different forms: (a) procedures that call host operating system
software to gain needed functionality, and (b) procedures that have been written to attain
necessary performance. (These procedures are invoked with high frequency but do not use

operating system functions; since they are in a machine-dependent, non-Ada language, it can be
said that they comprise a portion of host operating system requirements.) In an attempt to
minimize the size of the VML, the number of procedures has been kept as small as possible.
Tables 1 and 2 describe procedures that are of each form. To clearly depict what host operating

system software the 1SS requires, the tables specify the VML entry point names and the

functionality requirements fulfilled (Table 1) or the performance requirements fulfilled (Table .'
2). Note that it may be possible to implement some of the VML procedures in Ada on some systems
and still meet the functionality and performance requirements. Therefore, in evaluating any
future candidate system, a rigid examination should not occur for operating system capabilities
that match exactly the requirements given in Tables 1 and 2. Where appropriate, equivalent and
acceptable implementations for fulfilling requirements should be considered.

3.4.3 Hardware Requirements

Computer hardware is available in a wide range of varying capacity, functionality, and
performance. This section of the report describes the basic requirements of a hardware system
capable of developing and executing the ISS.

It is not necessary to require processor, storage, and display station equipment to be
packaged either together in a desktop unit or separately in order to successfully develop and
execute the SS on that equipment. For clarity, however, processor/peripheral requirements are
described separately from display station requirements.

12 - *,

Table 1. V14L Procedures Utilizing Host Operating System Software %

VIL Entry Point Name Functionality Requirement Fulfilled

1. BACKSPC Back space 1 record on a tape file
2. CALL Call procedure with absolute address
3. CHILDACTIVE Check for an active sub-process .
4. CLOSET Close a tape file
5. DISMOUNT Dismount a tape
6. EXP Raise e to power of input value
7. FCLOSE Close a file
8. FCREATE Create a database file
9. FGETS Read a system file record

10. FOPEN Open a database file
11. FPUTS Write a system file record '12. FREAD Read a database record
13. FREEMEN Deallocates dynamic storage
14. FREM4OVE Remove a file
15. FSEEK Position to a database record
16. FWRITE Write a database record
17. GETT Read a tape record -
18. GET DATETIME Return the current date and time
19. GETTERM4 INFO Return input terminal type
20. GET TID Return the terminal identification
21. GETTIMERS Return elapsed and CPU time
22. GET P1D Return the process id '..-
23. IBOOL Perform specified boolean oper.
24. INTOCHAR Convert an integer to a character
25. LOW LOCK Lock a resource
26. LOW UNLOCK Unlock a resource
27. MOUGNTT Mount a tape
28. NEWMEM Allocate dynamic storage ',:-..
29. OPENT Open a tape file
30. PG4_EXISTS Determine if a program exists
31. PUTT Put a tape record
32. PRINTFILE Print a file
33. RAND Generate a random number
34. RESUMEPROCESS Resume a process
35. REWINDT Rewind a tape file
36. RUNPGM Run a non-background program
37. RUNPROGRNM Run a background program
38. SHIFT Perform specified shifting oper.
39. STOPPROCESS Stop a process
40. SUBMITFILE Submit a command file
41. SUSPENDPROCESS Suspend a process
42. TEMPFILE Create a name for a system file
43. TRANLOG Translate logical to actual name
44. TRAPMACHINEEXCEPTIONS Set up to trap machine exceptions45. TRIG Perform the specified trig funct.
46. UNIT READ Read input from a terminal

*,.
47. UNIT WRITE Write output to a terminal
48. WAIT Halt program for input time

13 ."..'

. : "
..., ..'....%- .% .,. -,.. -.- , .-." -

a,.. ,S_. ; , . ., .,.. ., .'. > .. , , ..,.".':. ..

Table 2. V14L Procedures Fulfilling Performance Requirements

VOL Entry Point Name Performance Requirement Fulfilled

1. CO4PAREMEM Efficiently compares two ranges of
memory locations

2. FILLMEM Efficiently initializes a range of *J

memory locations

3. MOVEHEN Efficiently moves one range of
memory locations to another range of
memory locations

4. SEARCHIMEN Efficiently searches a range of
memory locations for a specified
string of data

3.4.3.1 Process/Peripheral Requirements

Following is a list describing the minimum processor and peripheral requirements for

successfully executing the ISS:

1. Processor clock of at minimum 8 MHz.

2. Capability of addressing a minimum of 1 MB of random access memory (RAN) for software

development and ISS execution.

3. A minimum of 40-MB hard disk storage for operating system, program development, and ISS

applications data storage.

4. A 1-W floppy disk drive.

Note that it would be possible to implement a more restricted version of the ISS on a system

providing less process/peripheral capacities than those listed.

3.4.3.2 Display Station Requirements

Following is a list describing the minimum display-station requirements for successfully
presenting ISS displays:

1. Color graphics monitor: An interactive monitor providing both alphanumeric and graphics

display capabilities is necessary. Any mixture of text, graphics, and background colors is

allowed. Drawing primitives of at least points, vectors, arcs, circles, and rectangles is

required. It is necessary for the station to clip picture elements so that screen boundaries are
not exceeded. Color and blink attributes must be assignable to any picture primitive.

Following are specific monitor requirements:

a. Screen size of at least 13-inch diagonal.

b. Dot triad spacing of 0.31 mm or better.

c. At least 42-Hz, non-interlaced refresh rate to prevent flicker.

d. Resolution of at least 480 horizontal by 360 vertical.

14

- w- - w- <F w . -..°. ,

e. Blink capability.

f. 24 to 32 lines with minimum of 80 character lines.

g. 480+ characters-per-second writing rate. a.

h. At least 10 microseconds-per-pixel vector-writing rate.

2. Keyboard with function keys and numeric pad.

3. 96 standard ASCII characters plus varying character sizes.

4. If not provided, expandable to support light pen, touch panel, mouse, or other pointing
device.

3.4.4 VAX-11/780 And P14200 Implementations

In order to determine the portability of the ISS, software initially implemented on the

VAX-11/780 has been implemented on the 68000-based PM200 microcomputer. In general, key ISS
modules ported nicely to the PM200 due to (a) the fulfillment, by the PM200, of the Ada
programming language requirements, host operating system requirements (UNIX), and hardware

requirements discussed in Sections 3.4.1, 3.4.2, and 3.4.3 and (b) the ease with which the VML
was reimplemented on the P1200.

The VML consists of approximately 2500 lines of FORTRAN code and 600 lines of Assembly
language code on the VAX-11/780. On the P1200, the VML is approximately 1300 lines of code
implemented in the C language. By reimplementing this relatively small amount of software to
interface to the UNIX operating system and by recompiling the Ada source on the PM200, programs
were ported with relative ease.

It should be emphasized that the PM200 implementation was to demonstrate the feasibility of
ISS transportability and the execution of the ISS on a microcomputer. Performance and Winchester
disk size issues need to be addressed before the PM200 can be considered -a production
implementation (Section 5.0, Conclusions and Recommendations).

The problems encountered in porting the software were relatively minor. Differences in the

command languages for VAX VMS and UNIX had to be reconciled in order to submit programs and print
jobs. An open file limit (17) exists in UNIX that does not exist in VMS, and this caused minor

modifications to some application programs. And, several compiler bugs were encountered in the
Ada compiler on the P14200 (to be expected for early implementations of Ada), causing minor -

modifications in some of the application programs.

4.0 ISS POTENTIAL

As a result of the Standardized Software project, significant potential uses exist for the

ISS: (a) organizations currently using or planning to purchase hardware upon which the ISS now
operates can use the system immediately; (b) organizations currently using or planning to
purchase a system upon which the ISS can operate will be able to use the ISS after implementation
of the Virtual Machine Layer for that system; (c) depending on the training requirements for an
organization, the ISS can be delivered, in any combination, as an authoring system, a CAI

delivery system, and a CMI system; (d) depending on the training requirements for an
organization, the ISS can be tailored to fulfill those requirements; and (e) ISS users can

reasonably utilize lower-cost microcomputers, such as the system used in the Standardized
Software project, to perform as a central processor. The following sections elaborate on these
potential uses.

15

,. . . - ..

".. .|

x. /.m.bV'. .-. '.-~

tp

4.1 Current Implementations

During the project, the ISS was implemented on two systems: the VAX-11/780, using the VMS
operating system, and the PM200, using the UNIX operating system. There is significant potential
associated with each implementation.

The VMS implementation is significant in that it is available on an ever-broadening and
popular series of machines, including the VAX-11/725, VAX-11/730, VAX-11/750, VAX-11/780, and the
Micro VAX. DOD organizations currently using or planning to purchase machines from the VAX/VMS
line can use the ISS as their training system.

The UNIX operating system also continues to gain in popularity. Unlike VMS in the VAX line,
it is implemented on many machines, thereby providing an excellent opportunity for transportation

of the ISS technology.

For either implementation, configuration parameters such as central memory size, disk storage

space, tape storage space, and terminal type should be carefully considered to best operate the
ISS in a particular training environment.

4.2 Future Implementations

In addition to systems utilizing VMS and UNIX, the ISS is implementable on other systems that
fulfill the language, operating system, and hardware requirements specified in Sections 3.4.1,
3.4.2, and 3.4.3. The capabilities of a potential system should be examined carefully to
determine the feasibility of ISS implementation. For a system fulfilling the requirements, the
Virtual Machine Layer must be implemented in order for the ISS to operate successfully on that

system.

4.3 The Configurable ISS
..-

Depending on the training requirements for an organization, the ISS can be delivered, in any

combination, as a CAI authoring system, a CAI delivery system, and a CMI system. If a training
environment requires CAI that has not been developed, a method to systematically and efficiently
create courseware is necessary. The software modules comprising the CAI authoring system (CAI
Authoring, Graphics, and Simulation Authoring) provide this method. If CAI presentation is

o. required, software modules comprising the CAI delivery system should be used (CAI Presentation
and Simulation Presentation). And if management and scheduling of assignments, testing,
remediation, and enrichment activities are necessary, support is provided via the CMI system (CMI
Development, CMI Operation, and Data Analysis).

4.4 ISS Tailoring

Particular training environments may require hardware devices, tenminal types, and/or
functional capabilities that are not currently provided in the ISS. With the layered and modular
design of the system (Figure 4), new software and device types can be integrated into the ISS
with minimal effort. The ISS software is adaptable in nature, with clean interfaces provided by
the Ada package specifications. A terminal definition file can be updated to reflect the

characteristics of hardware devices to be added to the system.

16
. . " . ..

. f-. .:p

4.5 The ISS Micro As a Central Processor

By implementing the software on the PM200 microcomputer, it has been shown that the ISS can
operate on a more economically feasible machine than minicomputers and mainframes. If, as a
hypothetical case, a training organization wanted to support 10 students utilizing 10 curricula,
10 courses, and 10 two-hour CAI lessons, approximately 4 MB of disk storage for instructional
data would be required.

The breakdown of the storage requirements is as follows: 4

1.0 M~ytes Storage for 10 curricula
0.3 ytes Storage for 10 courses
0.2 M~ytes Storage for 10 active students
2.5 MBytes Storage for 10 two-hour lessons

4.0 MBytes Total storage for instructional data

Also to be considered are ISS program executables which require approximately 15 MB and
operating system storage which is approximately 10 MB. The total ISS Winchester storage
requirement for this hypothetical case is, therefore, 29 MB. Winchester disk technology is
available to easily accommodate this capacity. Additional Winchester space would allow an
increase to even more curricula, courses, and student capacity. Current microcomputer technology
also allows large amounts of main memory.

With these capabilities currently available in the PM200 and in microcomputer technology in
general, a low-cost alternative exists (as compared to minicomputers and mainframes) for certain
training applications. Figure 6 depicts an example of the levels of capability from which a
training organization could choose, depending on available funds, storage requirements, and
computing power necessary. CMI could be performed at the central computer in all cases, and

CONSOLE

-,-.

~EXAMPLE DISK'

r'CENTRAL PROCESSOR "''

ALTERNATIVES:

PM200(O END) .-

LOW~:OLO ODISK4 PfOPUW

(COULD 6 FLOPPY DISK V f C s/ e o m n A t r ai s

ON A M",O) ""

(HIGH END) ,"

Low on NIG0H SPEED PRINTER

INTELLIGENT. SEMI -INT ELLIOENT. DUMB TERMINAL8S.'

Figure 6. Example of Cost/Performance Alternatives.

- ~17.4,.

.17. 7

depending on the intelligence of the display station, CAI could be performed either under control

of the central computer or the display station processor.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The major goals set forth at the beginning of the Standardized Software project have been

accomplished. Applications software that best satisfies the Functional Description has been

converted or developed. The developed system is portable. Finally, the system has been

implemented on a low-cost minicomputer and microcomputer.

A follow-on operational test is recommended for both the VAX and PM200 implementations.

During this operational test, significant performance upgrades should be made to the software in

order to support the required ISS user load. The test would also allow a user community to

evaluate the functionality of the SS. Appropriate change requests could be issued to AFHRL for

evaluation. Enhancements deemed beneficial could then be made In a timely, orderly, and

non-disruptive manner.

The PM200 implementation was to demonstrate the feasibility of 1SS transportability and

execution of the ISS on a microcomputer. While both capabilities have been demonstrated,
performance and Winchester disk size issues need to be addressed before the PM200 can be

considered a production implementation. Higher-speed, larger-capacity Winchester drives are now

available and can be placed in existing slots in the PM200. These are recommended as

replacements for the smaller, slower drives used during the Standardized Software project.

Upgrade of the PM200 UNIX system is also recommended to provide more portability.

Finally, consideration should be given to development of a generic data converter in order to
transport %SS courseware. With the differences in data packing formats of the many Ada compilers

that are and will come into existence, it will be necessary to easily convert those different

formats. By developing a generic data converter, courseware portability (as well as software
portability) becomes more feasible.

REFERENCES

AIS-3.8-1674. (1979, August). CAMIL reference manual.

ANSI/MIL-STD-1815A. (1983, January). Reference manual for the Ada programming language.

DD1017FO19. (1974, January). Critical item development specification for the computer assisted/

managed instructional language (CAJIL) component of the advanced instructional system.

Marshall, A.P. (1983, Autumn). Development of a transportable CBI system. Journal of

Computer-Based Instruction, 10(3,4), 66-69.

~ .*U-9W.GOVEN4NMNY IN.~ (pp. l
8 1 6 6 5 94&, 0 5 5 4 0 0 0

-.-. 18

oF

1 .. *5 *.

*4 ***~4~4~* - -.-.

- A. - - -A -- - - . - .. t~ -.-.--------.

.1

-U

4'

4.

.4.

-S.-,

-. 4

-p.

S. 4

4*4

546

L

- - .*f4*rr. -. * ~

